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ABSTRACT 
A new heat transfer simulation capability is described. Non-traditional features of this capability include: 
a seamless link to CAD-CAM for rapid problem specification/description, integrated automatic grid 
generator tools for rapid mesh generation, nonlinear and/or varying material properties, source-terms and 
boundary conditions, a one-element type approach for simplicity and efficiency, automatic self-adaptive 
mesh refinement and coarsening with accurate error estimation, heavy reliance on iterative solvers, and 
on-line display on workstations for immediate visualization and user feedback. These innovations are 
documented on several examples that demonstrate the usefulness of the developed capability. 
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INTRODUCTION 

The need to quickly simulate transient and steady heat transfer problems is common to many 
areas of engineering. Numerical algorithms for the simulation of heat transfer problems have 
been devised since the early 60's1–4, and have found widespread acceptance in industry. However, 
up to very recently, these tools had to be used in batch-mode, only linear problems could be 
solved efficiently, and problem set-up time was a major stumbling block. In short, these tools 
were hard to use, requiring considerable expertise and training. 

Recent advances in both numerical algorithms and computer hardware have made it possible 
to simulate efficiently even extremely complicated 3-D geometries that had proven intractable 
to date. The advances in numerical algorithms include automatic mesh generation and mesh 
adaptation algorithms, fast iterative solvers that exploit efficiently multiprocessor platforms, fast 
table look-ups for nonlinear material properties, and the widespread use of CAD-tools to define 
geometries. Computer hardware has seen the advent of supergraphics workstations that allow 
immediate visualization of results on the fly, and multiprocessor RISC or i860-based architectures. 

The present paper describes a new set of algorithms and tools that combine in an efficient 
way the advances in these fields. The result is an adaptive finite element code for the simulation 
of transient and steady heat transfer problems that is closely coupled to CAD and on-line display 
tools for fast and error-free problem definition. 

0961-5539/94/040311-18S2.00 
© 1994 Pineridge Press Ltd 

Received August 1993 



312 R. LÖHNER AND J. McANALLY 

DESIGN CONSIDERATIONS 

The following design criteria were followed for the development of the present set of tools: 
(a) Arbitrary Geometries: an engineer designing a new product neither has the desire nor the 

time to go through the intellectual exercise of answering the question: will I be able to 
grid my new design idea? Therefore, he must be provided with tools that can quickly 
mesh any arbitrary domain. This naturally implies the use of unstructured grids (e.g. 
finite-element type grids). 

(b) Link to CAD-CAM: the only way to quickly describe complex geometries is through the 
use of CAD-CAM tools. Therefore, any analysis tool has to be linked in a seamless manner 
to any available CAD-CAM tools. Given the variety of CAD-CAM packages used by 
industry, the links to establish should be as generic as possible, without sacrifice of 
performance. 

(c) Fast Gridding: an engineer needs the result as fast as possible. Currently, the biggest 
bottleneck facing 3-D simulations is not CPU-time, but gridding time. The only automatic, 
fast grid generators currently available generate tetrahedral meshes5–8. Therefore, we will 
concentrate on triangles and tetrahedra for the choice of the spatial discretization. 
Remember that the mesh is only a vehicle to the solution, not an end in itself. Ideally, 
the user should not be aware of the mesh, and should not be forced to make decisions as 
to what element type or grid density a certain region of space requires. 

(d) Iterative Solvers: Given the size of typical 3-D problems, and the rapid advent of parallel 
machines, the most rational way of solving the large coupled systems of equations that 
arise due to finite element discretization is by iterative solvers. Iterative solvers are also 
ideally suited for nonlinear applications, where no multiple right-hand side solutions via 
direct solvers are possible. 

(e) Simple Elements: in order to expedite calculations for iterative solvers, and to achieve 
optimal vectorization, simple elements are preferred over elements of higher order. 

(f) In order to reduce software complexity and maintenance costs, the method should be the 
same in 2-D as in 3-D. 

(g) In order to be applicable to a large range of real-life problems, fast table look-up algorithms 
for nonlinear materials have to be provided. 

LINK TO CAD-CAM 

The dominant cost of 3-D simulations for complex geometries is given by the man-hours required 
to define the surfaces of the domain to be gridded. Once this surface has been defined, the 
generation of a suitable mesh using automatic grid generators is straightforward. We call this 
stage the pre-generation stage of a typical simulation. Every grid generator currently in use has 
its own way of defining surfaces and reading in data. In order to expedite the surface definition 
process we have developed a pre-generation tool that will take input from a variety of formats, 
e.g. IGES, panel-data, AutoCad, etc., and manipulate it in such a form that an error-free input 
file for the grid generator is created. Other options provided by the pre-generation tool are 
boundary condition definitions, and the merger of several individual input files, e.g. created by 
several co-workers in a team, to create a final detailed geometry. The idea of defining geometry 
and boundary conditions simultaneously is important, as it allows fully automatic mesh 
generation and adaptation. 

Although perhaps scientifically not very relevant, this pre-generation tool has opened the 
possibility of simulating problems whose geometrical complexity was beyond the scope of current 
techniques, and which had therefore not been computed in detail before. 
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AUTOMATIC GRID GENERATION 

A review of the literature indicates that the only truly automatic grid generators currently in 
use generate triangular or tetrahedral meshes. By automatic we mean that once the surface of 
the domain to be gridded has been defined, the surface and volume gridding proceeds without 
user intervention. For our purposes, we employ the advancing front technique to generate 
triangular, 2-D, and tetrahedral, 3-D, elements. The algorithm may be summarized as follows7–9: 

F.1 Define the boundaries of the domain to be gridded. This is accomplished by splines in 
2-D and surface patches in 3-D. 

F.2 Define the spatial variation of element size, stretchings, and stretching directions for the 
elements to be created. This is accomplished with a combination of background grids 
and sources. 

F.3 Using the information stored on the background grid, set up faces on all these boundaries. 
This yields the initial front of faces. At the same time, find the generation parameters 
(element size, element stretchings and stretching directions) for these faces from the 
background grid and sources. 

F.4 Select the next face to be deleted from the front; in order to avoid large elements crossing 
over regions of small elements, the face forming the smallest new element is selected as 
the next face to be deleted from the list of faces. 

F.5 For the face to be deleted: 
F.5.1 Select a best point position for the introduction of a new point IPNEW. 
F.5.2 Determine whether a point exists in the already generated grid that should be used 

in lieu of the new point. If there is such a point, set this point to IPNEW and 
continue searching (go to F.5.2). 

F.5.3 Determine whether the element formed with the selected point IPNEW does not 
cross any given faces. If it does, select a new point as IPNEW and try again (go 
to F.5.3). 

F.6 Add the new element, point, and faces to their respective lists. 
F.7 Find the generation parameters for the new faces from the background grid and sources. 
F.8 Delete the known faces from the list of faces. 
F.9 If there are any faces left in the front, go to F.4. 

The specific data structures used for search operations, as well as further algorithmic details can 
be found in References 7, 9. The particular implementation used in the present work generates 
grids at a rate of 12,000 tetra/min on the IBM RISC-6000/550 workstation. The triangular or 
tetrahedral grid obtained from the advancing front technique can also be combined with material 
data to produce a SINDA10 compatible input file. 

HEAT TRANSFER SOLVER 

The transient heat transfer equation given by: 
ρcpT,t= ·k T + S 

(1) 
T=T0 on ΓD, qn := n·k T = q0 + α(T – T1) + β(T4 – T4

2 ) on ΓN (2) 

where ρ,cp , T, k, S, T0 , α, β, T1, T2 denote the density, heat capacitance, temperature, conductivity 
tensor, sources, prescribed temperature, prescribed fluxes, film coefficient, radiation coefficient 
and external temperatures respectively, is solved using standard finite element procedures. This 
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implies making the assumption: 
T ≈ Σ Ni(x)Tt(t) (3) 

where Ni, Ti denote the shape-function and temperature associated with node i. Note that the 
shape-function is assumed independent of time, i.e. no mesh movement in time is considered. 
The Galerkin weighted residual statement: 

NjρcpNi dΩTi,t = – Njk Ni dΩTi + NjS dΩ + Njqn dΓ (4) 

leads to a matrix system for the vector of unknown temperatures T of the form: 
M·T , t = K·T + s (5) 

The temporal discretization of this coupled system of equations is accomplished using a 
standard finite difference algorithm, e.g.: 

• T = K · T + s (6) 

Here, ∆t denotes the time-step taken, ∆T the vector of nodal temperature increments, M the 
mass or capacitance matrix, K the conductivity matrix, s the assembled nodal source-vector, 
and Θ an implicitness parameter. For Θ > 0.5, an unconditionally stable implicit timestepping 
scheme is obtained, whereas Θ = 0 and a lumped mass-matrix M yields an explicit scheme. The 
large coupled system of linear equations obtained on the left in (6) is never solved directly: 3-D 
problems are simply too large for direct solvers, and nonlinear applications make iterative solvers 
a much better choice. Moreover, for nonlinear applications, the advantage of being able to solve 
for multiple right-hand sides with a direct solver disappears, making iterative solvers the method 
of choice. In the present case, a conjugate gradient solver11 with diagonal preconditioning is 
employed. Iterative solvers require many right-hand side like evaluations. In order to expedite 
these, all integrals are evaluated in closed form. 

Great care was taken to achieve near-optimal performance throughout the computer platforms 
envisoned, i.e. from RISC workstations through vector-supercomputers to MIMD machines. 
For the workstation applications, the points and elements are renumbered in order to reduce 
cache-misses12. For vector-supercomputers the elements are renumbered or coloured12, in order 
to achieve optimal vectorization during the assembly stage. Finally, for MIMD machines the 
computational domain is split up and allocated to the different processors13. 

NONLINEAR MATERIALS, SOURCES AND BOUNDARY CONDITIONS 

In order to be applicable to a wide range of problems, the heat transfer algorithm was designed 
ab initio for nonlinear materials, as well as nonlinear and time-dependent sources and boundary 
conditions. The most general way to input nonlinear material properties is through a table 
look-up. Given the temperature, the corresponding density, heat capacitance and conductivity 
(ρ, cp, k in (1), (2)) are obtained from linear interpolation. As the changes between time-steps 
can be assumed to be limited, the following nearest neighbour marching algorithm yields a fast 
table look-up scheme: 

T.0 Assume given: temperature T and the table entry for the last time-step ITABL 
T.1 Obtain the temperatures bounding the current table entry interval: T0, T1, with T0 < T1 
T.2 If T < T0 : set ITABL = ITABL – 1 and goto T.1 
T.3 If T > T1: set ITABL = ITABL + 1 and goto T.1 
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T.4 Interpolate linearly the material properties: 
ξ = (T- T0)/(T1 – T0) 
ρ = (1 – ξ)ρ0 + ξρ1 

cp = (1 – ξ)cp0 + ξP1 

k = (1 – ξ)k0 + ξk1 

Typically, convergence to the correct interval in steps T.2, T.3 is attained in one to two passes 
over the elements. This table look-up algorithm is fully vectorizable. For multimaterial 
applications, each element in the domain is given a material number. The table look-up then 
works on several materials simultaneously. The penalty in CPU time incurred by switching from 
constant material properties to general, nonlinear material properties is less than 10%. 

We have found that practitioners in the field tend to have complicated source terms, making 
it impossible to standardize them. Therefore, we allow the user to specify in a subroutine the 
particular source term desired. The subroutine allows access to all relevant parameters 
(temperatures, coordinates, material properties, etc.), but does not allow to alter these. This 
subroutine is linked to the heat transfer object code at run-time. 

For the boundary conditions, we follow the same route as for the source-terms. Several surface 
patches can be lumped together into a so-called 'environment'. The appropriate imposed or 
external temperatures, fluxes, film and radiation coefficients are coded by the user for the 
particular application. As before, this subroutine is linked to the heat transfer object code at 
run-time. 

ADAPTIVE REFINEMENT 

For the adaptation of the mesh, the classic h-refinement and coarsening is employed. We prefer 
h-refinement12–17 over remeshing18–20 as: 

(a) one of our main aims is the accurate tracking of transient heat transfer phenomena, 
(b) h-refinement leads to a very fast adaptation procedure both in 2-D and 3-D, and 
(c) h-refinement can be used as a user-friendly black box. 
The method is described in References 16, 17. The basic idea is to subdivide elements wherever 

the error exceeds a desired value. Conversely, the mesh is coarsened if the measured error 
becomes too low. The error estimation is divided into a steady-state portion that governs the 
spatial resolution, and a transient portion that governs the temporal resolution. For the spatial 
resolution, an interpolation error indicator in the elements of the form: 

ε s s= maxedges|(x1– x0)·(ql – q0)|, kd = k · (7) 

is employed. Here the max-operation refers to the edges of the element, c1 denotes an empirical 
constant (experience indicates that c1 = 0.23 gives reliable results), kd the side-projected 
conductivity, x0,1 the coordinates of the edge-endpoints and q0,1 the heat-fluxes at the 
edge-endpoints. The 1-D, constant k rationale for this error indicator may be inferred from 
Figure 1. To first order, the higher order components of the solution which cannot be represented 
by the linear finite element solution are given by the difference of the derivatives at the nodes 
u1,0

,x times the element length. The point-wise heat-fluxes for the general, multidimensional and 
multimaterial problem are recovered using the following averaging procedure: 

N iN j dΩqj = N ik N j dΩTj (8) 
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One can easily see that this error estimator is of the form: 
εss = ch2|T|2 (9) 

which is to be expected for linear elements, and that it can also be related to the 
Zienkiewicz-Zhu21 error estimator. In order to test this error indicator, we used the following 
model problem with exact solutions (see Figure 2): 

2T + S = 0, T = 0 on ΓD, n· T = 0 on ΓN (10) 
This problem has the exact solutions: 

T = 3x + 5x3 + 3x5 – x6 for S = 30x(1 – x)(1 + x(1 – x)) (11a) 

T = sin(ωx) for S = sin(ωx),ω = 2π (11b) 

For each of these two problems, a coarse and a fine mesh were run respectively. The results 
obtained, as well as the exact solutions, are shown in Figures 2a, b. The error estimated by (7) 
was compared to the error εex obtained from subtracting the exact from the numerical solution. 
The discrepancy between εss and εex was quantified by the following sum: 

r = (12) 

which gives a measure of the average discrepancy. The results obtained for the two different 
source-terms given by (11a, b) on the two meshes are recorded in Table 1. As one can see, the 
solution error is estimated by (7) to within 5% for all cases, which we find remarkable. 

For the temporal resolution, we simply use: 
εtr = c2|Tn + 1 – Tn| (13) 

i.e. the pointwise variation of the temperature in time (we set c2 = 1.0 for all the cases described 
below). 
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Table 1 Actual and estimated errors for model problems 

Source 

Eqn. (11a) 
Eqn. (11a) 
Eqn. (11b) 
Eqn. (11b) 

NELEM 

152 
602 
152 
602 

r 

0.0151 
0.0112 
0.0369 
0.0145 

Table 2 Run-times for 3-D cylinder problem 

Mesh 

Coarse 
Adapted 
Fine 

NELEM 

3,327 
11,000 

138,985 

CPU (secs) 

159 
5,116 

53,000 

These error indicators are used to refine the mesh in space (local h-refinement) or time 
(increase/decrease of the timestep ∆t employed). Once the user sets a desired temperature 
tolerance ∆T, the algorithm will refine/coarsen both the mesh and the timestep used 
automatically. One of the main hidden advantages accrued from adaptive meshing procedures 
as the one used for the present research is user-friendliness: the procedure automatically steers 
towards a mesh that is optimally suited to the problem at hand, freeing the user from an 
ill-defined (in particular for transient problems) and arduous task. 
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ON-LINE DISPLAY 

The advent of supergraphics workstations has allowed the solution of large 3-D problems in 
combination with immediate, on-line display of results. This combination has proven extremely 
powerful in practice, enhancing understanding of physical processes and avoiding input and 
problem set-up errors. Therefore, the capability to display immediately the results as they are 
being computed constitutes an important ingredient of any modern analysis tool. 

RESULTS 

Joint cooling 
The problem geometry, as well as the material parameters used, are displayed in Figure 3a. 

The initially hot material (Ti = 1200°C) is immersed at time t = 0 into an oilbath at T0 = 300°C. 
All the external surfaces are assumed to be subjected to a convection condition with a film 
coefficient α = 1 Kcal/m2 s °C. The accuracy required for the temperature field during all the 
stages of this transient calculated was set to Tacc = +/— 10°C, corresponding to about 1% of 
the initial temperature range. Figures 3b, c show the solutions and the grids corresponding to 
times t = 0.1805, t = 0.5338, t = 1.379 and t = 150.0 respectively. The last result is the expected 
steady-state in which the whole domain has reached the outside temperature. Observe the 
different levels of adaptation which change as the solution evolves in time. 

Casting solidification 
In order to demonstrate the use of several materials with temperature-dependent material 

properties, a casting solidification problem was simulated. The geometry, as well as the material 
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parameters and boundary conditions are shown in Figure 4a. Observe that the heat capacitance 
of the melt is temperature-dependent, and exhibits a jump at the point of solidification. The 
accuracy required for the temperature was set to Tacc = + / — 5°C. Figures 4b-e show the solutions 
and the grids corresponding to times t = 0.041, t = 1.394, t = 8.027 and t = 18.0 respectively. 
As before, observe the different levels of adaptation which change as the solution evolves in time. 
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Moving heat source on cylindrical surface 
This example, extended to 3-D from the 2-D example shown in Reference 20, illustrates the 

advantage of the adaptive refinement capability for transient heat transfer problems. A heat 
source of constant magnitude of S = 26,000 BTU/ft2 s and width δ = 0.01 ins is applied to the 
external surface of a half-cylinder of outer radius r0 = 0.125 in and inner radius ri = 0.110 ins. 
The heat source is initially positioned at the lower edge of the half-cylinder and subsequently 
moves around the cylinder at a speed of v = 2 ins/s. This type of heat loading may be found in 
aerospace vehicles that travel and maneuver at supersonic speeds. The internal surface of the 
cylinder is subjected to a convection condition with a film coefficient α = 7.8 BTU/ft2 s °R and 
a surrounding temperature of T0 = 50°R. Adiabatic (no heat-flux) boundary conditions are 
imposed for all other surfaces. The material properties for the cylinder were assumed constant, 
with ρ = 0.2831b m/in3, cp = 0.1825 BTU/lb m0 R, and k = 2 × 10 – 4 BTU/ins s °R. The 
accuracy required for the temperature was set to Tacc = + /—100°R, corresponding to about 
3% of the temperature range. Figures 5b-d show the solutions and the grids in the x/y plane 
corresponding to times t = 0.05, t = 0.10 and t = 0.15 respectively. A maximum of two levels 
of refinement were specified. This yielded grids with an average number of approximately 
NELEM = 11,000 elements. In order to assess both the accuracy and the performance of the 
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adaptive procedure, a coarse mesh of NELEM = 3,237 elements and a uniformly fine mesh that 
had the same element size as the adaptively refined mesh, consisting of NELEM = 138,985 
elements, were run besides the adaptive mesh. The temperature proiles obtained at the three 
outer monitoring points shown in Figure 5a are displayed in Figure 5e. Observe that the adaptively 
refined mesh captures very well the rise in temperature as the source moves around the outer 
cylinder, whereas the coarse mesh misses the maximum temperature by about 10%. The CPU 
times recorded for the different runs have been summarized in Table 2. One can see that a 
significant gain in CPU performance is achieved without sacrificing accuracy: 3-D runs in 
particular are unforgiving for uniformly fine meshes. 
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SSME bearing 
This case demonstrates the use of the techniques presented for a more realistic geometry. The 

part for which the temperature fields and heat fluxes are computed belongs to the Space Shuttle 
main engine (SSME). Starting from blueprints, we used our pre-generation tool in order to 
define the surfaces. A total of 700 surface patches were required to model the bearing accurately. 
The surface definition process took half a day. The wireframe of the surface is shown in Figure 
6a. The boundary conditions were given as follows: The external surface was assumed to be 
subjected to a convection condition with a film coefficient αext = 1.0 and a surrounding 
temperature of Text = 500°. Three liquid propellant entry ports are given at the center of the 
bearing, and the cold fluid is transported through the holes in the bearing (see Figure 6a). The 
heat transfer imposed by the liquid propellant was modelled using a convection condition with 
film coefficients and external temperatures of αlox = 2.0, Tlox = — 200°, αHpri = 2.0, THpri = – 150°, 
and αHsec = 2.0, THsec = – 100° respectively. The material properties for the bearing were assumed 
constant, with ρ = 1,cp = 1, and k = 1. The surface of the mesh, which consisted of approximately 
NELEM = 280,000 elements and NPOIN = 50,000 points is shown in Figure 6b. Note that 
although this number of elements and points seems high, this is the minimum required for a 
uniform mesh to define reasonably well the geometry of the bearing. The steady-state results, 
obtained after approximately 10 min of run-time on an IBM-RISC-6000/550, are displayed in 
Figures 6c, d. The error estimated was +/— 10°C, or 1% of the temperature range. This was 
deemed within the required accuracy for engineering purposes. For this reason, mesh adaptation 
was not invoked to enhance further the accuracy of the solution. 
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CONCLUSIONS 

A new nonlinear heat transfer simulation capability has been described. Important innovative 
design features of this capability, that set it apart from traditional heat transfer capabilities are: 
• A seamless link to CAD-CAM for rapid problem specification/description; 
• An integrated automatic grid generator tool for rapid mesh generation; 
• Heavy emphasis on nonlinear and/or varying material properties, source-terms and boundary 

conditions; 
• A one-element type approach, i.e. only linear triangles/tetrahedra for simplicity, efficiency 

and low software maintenance costs; 
• Automatic self-adaptive mesh refinement and coarsening with accurate error estimation; 
• Preconditioned iterative solvers for the rapid solution of large 3-D problems (> 50 K nodes); 
• Full vectorization for efficient use on the current generation of industrial super-computers; 
• On-line display on workstations for immediate visualization and user feedback. 
Future developments will center on better on-line visualization for 3-D problems, inclusion of 
radiation effects for absorbing media, optimum design as an option, and porting of the algorithms 
to a MIMD environment13. 
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